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A B S T R A C T

Statistical habitat models, such as spatial generalized linear mixed models (GLMMs) and spatial generalized
additive models (GAMs), provide valuable products to habitat assessments and ecosystem-based fisheries
management (EBFM) efforts. In particular, derived spatial distribution maps and quantitative relationships of
marine organisms to environmental variables (e.g., suitability indices) can be employed to develop or validate
ecosystem simulation models. Recent studies fitted spatial GLMMs and spatial GAMs to encounter/non-en-
counter data collected by different regional monitoring programs that use random sampling designs, so as to
enable the production of distribution maps and suitability indices in bulk. However, despite these large efforts, it
was not possible to obtain distribution maps for a number of species and life stage combinations, including the
juvenile stages of coastal fish species such as croaker (Micropogonias undulatus). In this study, we introduce a
grid-summarization method that allows for the combined use of encounter/non-encounter data collected by
multiple monitoring programs at random and fixed sampling stations. We demonstrate our grid-summarization
method for contrasting species of the western U.S. Gulf of Mexico: red snapper (Lutjanus campechanus), for which
data delivered by monitoring programs employing random sampling designs have a satisfactory spatial coverage
and the use of monitoring data collected at fixed sampling stations is not necessary; and croaker and brown
shrimp (Farfantepenaeus aztecus), for which the combined use of monitoring data collected at random and fixed
sampling stations enables or improves the generation of distribution maps. We compare spatial GLMMs and
spatial GAMs that rely on the grid-summarization method (“new models”) to spatial GLMMs and spatial GAMs
that do not rely on the grid-summarization method (“status-quo models”). We found that the grid-summarization
method that allows for the combined use of monitoring data collected at random and fixed sampling stations
results in reasonable seasonal distribution maps and suitability indices for the species and life stage combinations
(e.g., croaker early juveniles, small brown shrimps) that are undersampled by the monitoring programs that
employ random sampling schemes. We also found that the grid-summarization method provides reasonable
seasonal distribution maps and suitability relationships for species and life stage combinations (e.g., red snapper
adults) for which the status-quo method already provided reasonable results and the combined use of monitoring
data collected at random and fixed sampling stations is not necessary. For these species and life stage combi-
nations for which the status-quo method worked well, the choice of the grid-summarization method over the
status-quo method depends on whether the fisheries analysts wish to produce smoother distribution maps and
whether they target higher predictive accuracy at the expense of lower discrimination accuracy when working
with spatial GAMs. Our results suggest that additional monitoring datasets that were previously excluded can be
employed by statistical habitat models, thereby enabling generation of distribution maps and suitability indices
for a wider range of species, life stage and season combinations.
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1. Introduction

Monitoring programs represent an invaluable source of data for
stock, habitat and climate-vulnerability assessments, and ecosystem-
based fisheries management (EBFM) efforts (Gunderson, 1993;
Schneider, 2000; Grüss et al., 2017a; O’Farrell et al., 2017). Monitoring
programs can be classified as fisheries-independent or fisheries-depen-
dent. Fisheries-independent monitoring programs collect data through
well-designed research surveys, while fisheries-dependent monitoring
programs rely on fishing activities to obtain the data (Thompson, 2002;
Grüss et al., 2018e). One can also distinguish between monitoring
programs that visit the same sampling stations repeatedly across time
(i.e., use a fixed sampling design) and monitoring programs that em-
ploy random sampling designs. Random sampling designs typically
consist of dividing the region of interest into sampling units (e.g., based
on predefined longitudinal, latitudinal and depth strata), and visiting
only a random fraction of these sampling units for each sampling
period. By enabling all sampling units a non-zero probability of selec-
tion, random sampling designs facilitate straightforward statistical
analyses of monitoring data (Giuffre, 1997; Kitchenham and Pfleeger,
2002).

Statistical habitat models (also referred to as “species distribution
models”) fitted to monitoring data can provide a diversity of products
to habitat assessments and EBFM efforts (Grüss et al., 2018b; Thorson,
2019). Statistical habitat models are particularly useful to map the
spatial distributions of marine organisms, notably their preferred nur-
sery and spawning habitat (often referred to as “essential fish habitat”;
Kai et al., 2017; Grüss et al., 2018a, 2019a; Laman et al., 2018). In the
U.S., mapping essential fish habitat is one of the requirements of the
Magnuson-Stevens Fishery Conservation and Management Act (MSRA
(Magnuson-Stevens Fishery Conservation and Management
Reauthorization Act), 2006). Distribution maps generated from the
predictions of statistical habitat models are also critical inputs of many
of the spatially-explicit ecosystem simulation modeling platforms that
are instrumental to advancing EBFM efforts (e.g., Atlantis; Fulton et al.,
2004, 2011; OSMOSE; Shin and Cury, 2001; Grüss et al., 2016). For
spatially-explicit ecosystem modeling platforms like Ecospace (Walters
et al., 1999, 2010) that do not rely on distribution maps as inputs,
distribution maps can serve to validate model spatial predictions. Many
of the spatially-explicit ecosystem modeling platforms that do not rely
on distribution maps as inputs use some form of suitability indices to
simulate the spatial distribution patterns of marine organisms (e.g.,
Ecospace; Christensen et al., 2014). A suitability index expresses the
probability of encountering individuals of a given species group/spe-
cies/life stage as a function of an environmental parameter, and suit-
ability relationships have a long history of use in fisheries science
(Secor, 2009; Grüss et al., 2018b; Runnebaum et al., 2018). Both dis-
tribution maps and suitability indices are often estimated by species
and life stage, and when appropriate, further estimated specific to
season.

One major issue with individual monitoring programs is that their
spatial, temporal and/or taxonomic coverage is often too limited to
produce satisfactory distribution maps and suitability indices in bulk for
the many species typical of habitat assessments and EBFM efforts (Grüss
et al., 2017b; Dolder et al., 2018; Pirtle et al., 2019). To remedy this
issue, some recent studies have fitted statistical habitat models to en-
counter/non-encounter data (e.g., Grüss et al., 2017b, 2018b, 2018c,
2018e, 2018f), count data (e.g., Roberts et al., 2016; Mannocci et al.,
2017; Runnebaum et al., 2018) or biomass data (e.g., Dolder et al.,
2018; Perretti and Thorson, 2019; Weijerman et al., 2019) collected by
multiple monitoring programs. In particular, in the U.S. Gulf of Mexico,
spatial generalized linear mixed models (GLMMs) and spatial general-
ized additive models (GAMs) have been fitted to encounter/non-en-
counter data collected by the different regional monitoring programs
that use random sampling designs, so as to enable the production of
distribution maps and suitability indices for the numerous species

groups, species and life stages represented in regional ecosystem
models (Grüss et al., 2018b, 2018c, 2018f). This endeavor resulted in
the provision of hundreds of annual and seasonal distribution maps and
suitability indices to ecosystem models. However, despite these large
efforts, it was not possible to obtain distribution maps and suitability
indices for several species and life stages, including the juvenile stages
of some common coastal fish and invertebrate species such as Atlantic
croaker (henceforth “croaker”; Micropogonias undulatus), common
snook (Centropomus undecimalis), black drum (Pogonias chromis)
sheepshead (Archosargus probatocephalus), and stone crab (Menippe
mercenaria) (Grüss et al., 2018e).

To date, the large efforts undertaken in the U.S. Gulf of Mexico
relied on monitoring data collected only at random sampling stations.
However, in the U.S. Gulf of Mexico, many fisheries-independent sur-
veys are carried out at fixed sampling stations (Grüss et al., 2018e). In
particular, all the fisheries-independent surveys conducted by the
Louisiana Department of Wildlife and Fisheries (LDWF), except for one
(the vertical line survey that operates on offshore petroleum platforms),
employ fixed sampling designs in coastal areas (SEDAR, 2010; Brown
et al., 2013). Developing a method that allows for the combined use of
monitoring data collected at random and fixed sampling stations would
enable the generation of distribution maps and suitability indices for
species and life stages for which this is currently not possible, and may
improve on the distribution maps and suitability indices presently
feasible from monitoring data collected only at random sampling sta-
tions.

In this study, we introduce a grid-summarization method that al-
lows for the combined use of encounter/non-encounter data collected
by multiple monitoring programs at random and fixed sampling sta-
tions. Our grid-summarization method consists of producing a spatial
grid for the marine region of interest, and assigning the encounter/non-
encounter data collected by monitoring programs to the barycenter of
the closest spatial grid cell. Statistical habitat models are then fitted to
grid-summarized monitoring data and, ultimately, the predictions of
the statistical habitat models are utilized to construct distribution maps
and suitability indices. We demonstrate our grid-summarization
method for contrasting species of the northwestern Gulf of Mexico
(“NWGOM”): red snapper (Lutjanus campechanus), for which data de-
livered by monitoring programs employing random sampling designs
have a satisfactory spatial coverage and the use of monitoring data
collected at fixed sampling stations is not necessary for any life stage or
season; and croaker and brown shrimp (Farfantepenaeus aztecus), for
which the combined use of monitoring data collected at random and
fixed sampling stations enables or improves the generation of dis-
tribution maps. We compare statistical habitat models fitted to grid-
summarized monitoring data (“new models”) to statistical habitat
models fitted to raw (not grid-summarized) monitoring data (“status-
quo models”). We fit spatial GLMMs whose predictions are employed to
construct seasonal distribution maps, and then spatial GAMs whose
predictions are employed to produce suitability indices. In these two
situations, we examine the predictions of the new models versus the
status-quo models. The statistical habitat models developed for croaker
and brown shrimp life stages allow us to explore the benefits of using
monitoring data collected at both random and fixed sampling stations,
while the statistical habitat models developed for red snapper life stages
specifically allow us to evaluate the impacts of using the grid-sum-
marization method rather than the status-quo method to generate dis-
tribution maps and suitability indices.

2. Material and methods

2.1. A grid-summarization method allowing for the combined use of
monitoring data collected at random and fixed sampling stations

We developed a new grid-summarization method that enables the
fitting of statistical habitat models to encounter/non-encounter data
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collected by multiple monitoring programs at random and fixed sam-
pling stations. The first step of our new method consists of the defini-
tion of a spatial grid of cells for the marine region under consideration
(Fig. 1a). This spatial grid is utilized to summarize the monitoring data
collected at random and fixed sampling stations (see next paragraph),
but also to generate a prediction grid that is employed to translate the
predictions of statistical habitat models fitted to grid-summarized
monitoring data into distribution maps and suitability indices (see
Subsections 2.5 and 2.6).

For a given species/life stage/season, the grid-summarization of
monitoring data consists, for each monitoring program and year, of: (i)
assigning the encounter/non-encounter data to the closest spatial grid
cell, and assigning to these data the geographical coordinates of the
barycenter of the assigned spatial grid cell; and (ii) assuming encounter
(i.e., a value of 1) within a given spatial grid cell if at least one of the
data points falling within that spatial grid cell is an encounter data
point, and non-encounter (i.e., a value of 0) otherwise (Fig. 1b). For
example, looking at Fig. 1, as no encounter data point falls within the
top left cell of the spatial grid, the top left cell is assigned a value of 0
(non-encounter); and, as four encounter data points fall within the
middle left cell of the spatial grid, the middle left cell is assigned a value
of 1 (encounter). Our grid-summarization of monitoring data is neces-
sary for obtaining a dataset of independent data points for subsequent
statistical analyses. This process is similar to the calculation of average
predator stomachs in fish diet studies, which fisheries analysts imple-
ment because individual stomachs obtained from the same sampling
event are in general non-independent samples (Nielsen et al., 1983;
Moriarty et al., 2017; Binion-Rock et al., 2018; Grüss et al., 2020).

Next, statistical habitat models are fitted to the grid-summarized
monitoring data. The probabilities of encounter predicted by the sta-
tistical habitat models (e.g., spatial GLMMs, spatial GAMs) can be used
to construct distribution maps and suitability indices. The statistical
habitat models fitted to grid-summarized monitoring data collected at

random and/or fixed sampling stations (i.e., employing the grid-sum-
marizing method) are hereafter referred to as “new models”, while the
statistical habitat models fitted to the raw (not grid-summarized)
monitoring data collected only at random sampling stations are here-
after referred to as “status-quo models”. In the following, we compare
the predictions of new spatial GLMMs to those of status-quo spatial
GLMMs, and then the predictions of new spatial GAMs to those of
status-quo spatial GAMs.

2.2. Study areas and study species

In addition to demonstrating our new grid-summarization method,
this study aims to provide seasonal distribution maps and suitability
indices to an ecosystem model of the NWGOM that is currently under
development. This ecosystem model under development is an ESIBM
(an extension of single-species individual based model (IBM), namely a
single-species IBM that incorporates environmental considerations) that
follows individuals of croaker within a coupled hydrodynamic-biogeo-
chemical model (namely FVCOM-WASP, Justić and Wang, 2014); a
precursor version of the ESIBM for croaker under development is de-
scribed in Rose et al. (2018a). The ESIBM for croaker under develop-
ment will use the results for croaker for formulation of bycatch mor-
tality effects of the NWGOM shrimp fishery on croaker and to validate
the predicted spatial distributions and habitat locations of croaker in
multi-year simulations. Distribution maps and suitability indices are
produced for brown shrimp and red snapper life stages in the present
study only to further analyze the performance and implications of our
new grid-summarization method.

The spatial domain of the ESIBM of croaker under development,
which is the same as the FVCOM-WASP model domain, encompasses
the NWGOM shelf from Mobile Bay, Alabama, to East Matagorda Bay,
Texas (Fig. 2a). Depth ranges between 0 and 300m within this spatial
domain. The FVCOM-WASP model also provided environmental data

Fig. 1. Key steps of the new grid-summarization method introduced in the present study. (a) Construction of a spatial grid for the marine region under consideration.
(b) Use of the spatial grid to summarize encounter/non-encounter data (filled and empty dots, respectively) for each monitoring program and sampling year.
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for the present study (see Subsection 2.4). We designed 10 km×10 km
(0.09°) spatial grid covering the FVCOM-WASP spatial domain (hen-
ceforth the “FVCOM-WASP spatial grid”; Fig. 2a). We employed the
10 km×10 km FVCOM-WASP spatial grid for developing spatial GAMs
for croaker, brown shrimp and red snapper life stages to then generate
suitability indices (Subsection 2.6). The suitability indices for croaker
life stages will serve to calibrate the ESIBM currently under develop-
ment.

For developing spatial GLMMs to then construct seasonal distribu-
tion maps (Subsection 2.5), we did not utilize the 10 km×10 km
FVCOM-WASP spatial grid, but rather a larger 10 km×10 km (0.09°)
spatial grid covering the entire NWGOM, namely the U.S. Gulf of
Mexico exclusive economic zone from Mobile Bay to the Mexican
border (Fig. 2b). As the spatial GLMMs do not include environmental
covariates, the spatial grid for the spatial GLMMs could be expanded
beyond the FVCOM-WASP grid to include additional sampling loca-
tions. The distribution maps that were produced for croaker life stages
from the predictions of the spatial GLMMs in this study will serve to
validate the spatial distributions predicted by the ESIBM of croaker
currently under development.

Our first study species is croaker, one of the dominant demersal fish
species by biomass in the waters of Louisiana, particularly those im-
pacted by large hypoxic events (Monk et al., 2015). Thus, croaker is one
of the focal species of studies interested in the potential effects of nu-
trient loading and hypoxia (Rose et al., 2018a, 2018b). Croaker un-
dertakes several ontogenetic migrations, i.e., moves offshore and into
deeper waters with age. Croaker larvae (< 32mm TL) settle in shallow
coastal waters (Rooker et al., 1998). Croaker early juveniles migrate to
slightly deeper waters as they reach around 97.5 mm TL (Yakupzack
et al., 1977). Croaker transition from the late juvenile to the adult stage
when they reach around 180mm TL, and, as adults, they occupy pri-
marily a large band of the NWGOM shelf (Sheridan et al., 1984; Darnell,
1990; Diamond et al., 1999). Therefore, while croaker adults are caught
by many monitoring programs using random sampling designs, a large
fraction of croaker juveniles can only be sampled by the coastal LDWF
surveys that use fixed sampling designs (Grüss et al., 2018e). In this
study, we consider the early juvenile (32–97.5 mm TL), late juvenile
(97.5−180mm TL) and adult (≥180mm TL) stages of croaker.

Our second study species is brown shrimp, which is one of the most
economically valuable living resources in the U.S. Gulf of Mexico
(National Marine Fisheries Service (NMFS), 2017). Shrimps account for
60 % of landings revenue in the U.S. Gulf of Mexico (National Marine
Fisheries Service (NMFS), 2017), and shrimp landings in the U.S. Gulf
of Mexico represent around 73 % of the total shrimp landings in the
U.S. (Iverson and Martin, 2009; Purcell et al., 2017). Like white shrimp

(Litopenaeus setiferus) and contrary to pink shrimp (Farfantepenaeus
duorarum), brown shrimp is much more abundant in the NWGOM than
in the northeastern Gulf of Mexico (Grüss et al., 2018e). Small brown
shrimps (< 100mm TL) are in general encountered in shallow areas
where depth ranges between 0 and 20m (e.g., marshes, inshore estu-
aries; Fry, 2008; Lassuy, 1983; Craig et al., 2005; Grüss et al., 2018e).
Therefore, like croaker juveniles, in Louisiana waters, small brown
shrimps are only sampled by the coastal LDWF surveys that employ
fixed sampling designs. Large brown shrimps (≥100mm TL) are en-
countered in deeper waters (primarily at depths ranging between 20
and 110m) that are well covered by the monitoring programs that use
random sampling designs (Darnell et al., 1983; Lassuy, 1983; Grüss
et al., 2018e). Brown shrimp is particularly abundant in Texas terri-
torial waters, where a combination of management measures, including
spatial and temporal closures, have been imposed for several decades
(Caillouet et al., 2008; Matlock, 2010; Grüss et al., 2018e). In parti-
cular, since 1960, spatial closures have been implemented in Texas
territorial waters from the shore to 9 nautical miles during small brown
shrimp peak emigration period (from late May to early July), so as to
delay the harvest of the small brown shrimps that are migrating from
inshore to offshore areas (Cody et al., 1989; Matlock, 2010). In this
study, we consider small (< 100mm TL) and large (≥100mm TL)
brown shrimps.

Finally, our third study species is red snapper, which also under-
takes ontogenetic migrations and is one of the most socio-economically
important fish species in the U.S. Gulf of Mexico (Gallaway et al.,
2009). The red snapper commercial fishery has been historically one of
the fisheries with the largest landings in the U.S. Gulf of Mexico, while
the red snapper recreational fishery is a multi-billion-dollar industry
(National Marine Fisheries Service (NMFS), 2017). The ecology of red
snapper has been extensively studied, and relying only on monitoring
programs using random sampling designs is sufficient to map the spatial
distributions of all red snapper life stages, including the younger ju-
veniles (Grüss et al., 2018e). Red snapper is much more abundant in the
NWGOM than in the eastern U.S. Gulf of Mexico (Karnauskas et al.,
2017; Grüss et al., 2018e; Dance and Rooker, 2019). Red snapper
younger juveniles (50−230mm TL) are primarily found at depths of
20−60m (Gallaway et al., 1999; Szedlmayer and Conti, 1999; Monk
et al., 2015), red snapper older juveniles (230−300mm TL) at depths
of 40−60m (Szedlmayer and Lee, 2004; Wells, 2007; Gallaway et al.,
2009), and red snapper adults (≥300mm TL) at depths of 80−200m
(Patterson et al., 2001; Mitchell et al., 2004; Gallaway et al., 2009). In
this study, we consider the juvenile (50−300mm TL) and adult
(≥300mm TL) stages of red snapper.

Fig. 2. Spatial grids developed for the present study. (a) The 10 km×10 km FVCOM-WASP spatial grid developed for this study, showing the depth estimates used in
the coupled hydrodynamic-biogeochemical model FVCOM-WASP. (b) The 10 km×10 km spatial grid for the northwestern Gulf of Mexico developed for this study,
and spatial patterns of depth in the region. The depth data used in (b) were derived from the 15 arc second (∼ 500m) resolution bathymetry grid predicted by the
Coastal Relief Model for the U.S. Gulf of Mexico (https://www.ngdc.noaa.gov/mgg/coastal/crm.html). TX=Texas – LA= Louisiana – MS=Mississippi –
AL=Alabama – vb=Vermilion Bay.
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2.3. Monitoring data used in this study

We compiled a large monitoring database that gathered the en-
counter/non-encounter data collected between 2000 and 2015 by al-
most all the monitoring programs that operate in the NWGOM and
collect fish length information. The datasets incorporated in the large
monitoring database came from a total of 21 monitoring programs,
including 12 fisheries-independent programs using random sampling
schemes, 4 fisheries-dependent programs using random sampling
schemes, and 5 fisheries-independent programs using fixed sampling
schemes (Table 1 and A1). From each monitoring dataset, we extracted
the following information: (i) the latitude and longitude of sampling
events; (ii) the year and season (spring: April-June; summer: July-
September; fall: October-December; winter: January-March) of the
sampling events; and (iii) whether the sampling events encountered or
not the life stages of interest (croaker early juveniles, late juveniles and
adults, small and large brown shrimps, and red snapper juveniles and
adults). One of the five fixed-station programs considered in this study
is conducted in coastal Alabama waters, while the four others are car-
ried out in coastal Louisiana waters (Fig. A2). Out of the 238,387 sta-
tions-years sampled by the 21 monitoring programs considered in this
study, a total of 39,127 stations-years was sampled by the fixed-station
programs (Table 1). In other words, using a combination of random-
station and fixed-station monitoring data instead of only random-sta-
tion monitoring data in this study increased the amount of monitoring
data potentially available for statistical analyses by 20 %. Note that we
did not employ the encounter/non-encounter data collected by the
Texas marine sport-harvest monitoring program survey, a fisheries-de-
pendent program using a fixed sampling scheme (Matter, 2012). The
reason for this is that the fisheries-independent programs collecting
monitoring data at random sampling stations in Texas waters that were
considered in this study already provided us with an extremely large
amount of encounter/non-encounter data for the entirety of the Texas
coast.

For each croaker, brown shrimp and red snapper life stage and each
season, we determined which of the monitoring datasets and years
should be considered to fit spatial GLMMs and spatial GAMs.
Specifically, we excluded: (i) monitoring datasets with fewer than 50
encounters (Leathwick et al., 2006; Austin, 2007; Laman et al., 2018);

and (ii) years with fewer than 5 encounters (Grüss et al., 2018b, 2018c,
2018e).

2.4. Environmental data used in this study

To generate suitability indices for each study life stage and season,
we fitted spatial GAMs to encounter/non-encounter data, as well as to
environmental data that came from the FVCOM-WASP simulations of
2002, 2005, and 2012. The FVCOM-WASP environmental data used as
predictor variables in the spatial GAMs were depth and bottom salinity.
Depth and bottom salinity have been found to influence the spatial
distribution patterns of croaker (Moore et al., 1970; Chittenden and
Moore, 1977; Craig and Crowder, 2005; Carassou et al., 2011), brown
shrimp (Zein-Eldin and Aldrich, 1965; Clark et al., 2004; Montero et al.,
2016; Hijuelos et al., 2017), and red snapper (Gallaway et al., 1999;
Szedlmayer and Conti, 1999; Karnauskas et al., 2017; Grüss et al.,
2018e; Dance and Rooker, 2019). Other environmental parameters are
also thought to influence croaker, brown shrimp and red snapper spatial
distribution patterns, such as temperature, low dissolved oxygen con-
centration, seafloor substrate type, and the presence of artificial reefs
(Miglarese et al., 1982; Diaz and Onuf, 1985; Craig and Crowder, 2005;
Li and Clarke, 2005; Karnauskas et al., 2017; Dance and Rooker, 2019).
These other environmental parameters were not included as predictors
in the spatial GAMs, because they were related to depth or bottom
salinity, they had incomplete spatial coverage, or because their ex-
pected effects were a threshold or another relationship (e.g., avoidance
of low dissolved oxygen concentration) requiring more precise tem-
poral and spatial matching of encounter/non-encounter data with en-
vironmental data than was possible between the monitoring data and
the FVCOM-WASP output.

The depth field was time-invariant, and the temporal and spatial
aggregation of FVCOM-WASP predictions provided seasonal fields of
bottom salinity for our spatial GAM efforts (Appendix A3). The final
seasonal fields of bottom salinity produced for this study resulted from
the averaging of the seasonal fields of bottom salinity for years of low
spring (2012), intermediate spring (2005), and high spring (2002)
freshwater inflows from the Mississippi River. The spatial resolution of
the coupled hydrodynamic-biogeochemical model FVCOM-WASP is
finer than that of the 10 km×10 km FVCOM-WASP spatial grid used in

Table 1
Monitoring programs operating in the northwestern Gulf of Mexico that were considered in this study. Details about the monitoring programs can be found in Table
A1.

Monitoring program Fisheries-independent or fisheries-
dependent program?

Sampling design Total number of stations-
years

Alabama Marine Resources Division (AMRD) Fisheries Assessment and Monitoring
Program (FAMP) Gillnet Survey (Alias: ALGILL)

Fisheries-independent Random 2291

AMRD FAMP Trawl Survey (Alias: ALTRAWL) Fisheries-independent Fixed 4954
National Marine Fisheries Service (NMFS) Bottom Longline Survey (Alias: BLL) Fisheries-independent Random 2542
Southeast Area Monitoring and Assessment Program (SEAMAP) Gulf of Mexico Inshore

Bottom Longline Survey (Alias: INBLL)
Fisheries-independent Random 1054

Louisiana Department of Wildlife and Fisheries (LDWF) Gillnet Survey (Alias: LAGILL) Fisheries-independent Fixed 16,670
LDWF Seine Survey (Alias: LASEINE) Fisheries-independent Fixed 11,766
LDWF Trammel Survey (Alias: LATRAM) Fisheries-independent Fixed 4650
LDWF Trawl Survey (Alias: LATRAWL) Fisheries-independent Fixed 1087
LDWF Vertical Line Survey (Alias: LAVL) Fisheries-independent Random 859
Gulf Coast Research Laboratory (GCRL) Trawl Survey (Alias: MSTRAWL) Fisheries-independent Random 642
NMFS Southeast Gillnet Observer Program (Alias: OBSGILL) Fisheries-dependent Random 489
Reef Fish Bottom Longline Observer Program (Alias: OBSLL) Fisheries-dependent Random 9017
Southeastern Shrimp Fisheries Observer Coverage Program (Alias: OBSSHRIMP) Fisheries-dependent Random 44,783
Reef Fish Vertical Line Observer Program (Alias: OBSVL) Fisheries-dependent Random 39,696
SEAMAP Groundfish Trawl Survey (Alias: TRAWL) Fisheries-independent Random 1593
Texas Parks and Wildlife Department (TPWD) Bottom Longline Survey (Alias: TXBLL) Fisheries-independent Random 141
TPWD Gillnet Survey (Alias: TXGILL) Fisheries-independent Random 12,480
TPWD Seine Survey (Alias: TXSEINE) Fisheries-independent Random 34,476
TPWD Trawl Survey (Alias: TXTRAWL) Fisheries-independent Random 42,106
SEAMAP Reef Fish Video Survey (Alias: VIDEO) Fisheries-independent Random 5284
SEAMAP Gulf of Mexico Vertical Longline Survey (Alias: VL) Fisheries-independent Random 1807
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the present study; FVCOM-WASP employs a 1−10 km unstructured
grid. Therefore, we first averaged the bottom salinity over the cells of
the 10 km×10 km FVCOM-WASP spatial grid developed for this study
for all hours within spring, summer, fall and winter for each of 2002,
2005 and 2012. We then averaged over the three years to obtain single
10 km×10 km maps of bottom salinity for spring, summer, fall and
winter (Appendix A3). We averaged the seasonal fields of bottom sali-
nity for 2002, 2005 and 2012 (i.e., we provided “climatologies” to the
spatial GAMs), because we wanted general relationships not subject to
variation within specific years. “Contemporaneous” environmental es-
timates (Mannocci et al., 2017a), rather than climatological environ-
mental estimates, could be provided to the spatial GAMs to generate
possibly more refined and year-specific suitability indices, but we leave
this for future research.

2.5. Development of spatial GLMMs and production of distribution maps

Spatial binomial GLMMs were developed for croaker, brown shrimp
and red snapper life stages for the different seasons of the year with R
package “VAST” Version 3.0.0 (Thorson, 2019), which can be accessed
freely online (https://github.com/James-Thorson-NOAA/VAST). We
only briefly detail the spatial binomial GLMMs here, as they were ex-
tensively described in many previous studies (e.g., Grüss et al., 2017b,
2018e). Additional details on spatial binomial GLMMs can also be
found in Appendix A4.

For each life stage and season, a spatial binomial GLMM approx-
imates probability of encounter pi at a sampled location s(i), using a
logit link function and linear predictors, including a Gaussian Markov
random field representing spatial variation in probability of encounter
at a fine scale (i.e., spatial autocorrelation at a fine scale):
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where: (i) βt is an intercept that varies among years; Yi t, is a design
matrix such that Yi t, is 1 for the year t during which sample i was col-
lected and 0 otherwise; nt is the total number of years for which
monitoring data are available for the life stage and season under con-
sideration; and, therefore, the first term, ∑ = β Yt

n
t i t1 ,

t is the fixed year
effect on pi on the logit scale; (ii) Gi m, is a design matrix such that Gi m, is
1 for the monitoring program m that obtained sample i and 0 otherwise;
γm is a coefficient such =γ 0m for the program m associated with the
largest sample size for the life stage and season under consideration, so
as to allow for the identifiability of all year intercepts βt ; nm is the total
number of monitoring programs retained for the life stage and season
under consideration; and, therefore, the second term, ∑ = γ Gm

n
m i m1 ,

m is the
monitoring program effect on pi, which is treated as a random effect via
the implementation of restricted maximum-likelihood (REML); and (iii)
εs i( ) are the random effects of the spatial residuals in probability of
encounter on the logit scale.

For the sake of computational efficiency, the random effects ε are
approximated using 4000 “knots”, which are defined through the ap-
plication of a k-means algorithm to the locations of the monitoring data
(raw (not grid-summarized) monitoring data collected only at random
sampling stations in the case of the status-quo models, and grid-sum-
marized monitoring data collected at random and/or fixed sampling
stations in the case of new models). The k-means algorithm allocates
knots over space with a density proportional to monitoring intensity
(Shelton et al., 2014; Thorson et al., 2015).

Template Model Builder (TMB) is called within R to estimate the
parameters of the spatial binomial GLMMs (Kristensen et al., 2016).
After fitting to monitoring data, the spatial GLMMs pass a validation
test, where standard convergence diagnostics and Pearson residuals are
employed (Appendix A4; Thorson et al., 2015; Grüss et al., 2017b,
2018e).

Once fitted and validated spatial binomial GLMMs are obtained, the

next step is to make predictions with the GLMMs. This step necessitates,
for each life stage and season, the construction of a prediction grid from
the spatial grid defined for the marine region of interest (the
10 km×10 km spatial grid for the NWGOM shown in Fig. 2b in our
case), based on the ranges of longitude, latitude and depth at which the
life stage was encountered by monitoring programs during the season
under consideration. In other words, for each life stage and season, the
spatial grid defined for the marine region of interest is subsetted to
obtain a prediction grid. The depth data that we used for generating
prediction grids were derived from the 15 arc second (∼ 500m) re-
solution bathymetry grid predicted by the Coastal Relief Model for the
U.S. Gulf of Mexico (https://www.ngdc.noaa.gov/mgg/coastal/crm.
html). We made predictions of probability of encounter with the
fitted and validated GLMMs for the 10 km×10 km prediction grids,
while assuming, for the life stage and season under consideration, that
the Gaussian Markov random field in each prediction grid cell is given
by the value of the Gaussian Markov random field at the closest knot.

Ultimately, it is possible to produce distribution maps from the
predictions made with fitted and validated GLMMs. First, for each life
stage and season, the fitted and validated GLMM is employed to con-
struct a map of probability of encounter for each sampling year. Then,
the maps of probability of encounter for each sampling year are aver-
aged to yield one average map of probability of encounter for each life
stage and season (Grüss et al., 2017b, 2018e).

We compared the results of the validation test and distribution maps
for the new versus the status-quo spatial GLMMs. As mentioned earlier,
the only difference between the new and the status-quo spatial GLMMs
is that, to define the 4000 knots, the k-means algorithm is applied to the
locations of the grid-summarized monitoring data collected at random
and/or fixed sampling stations in the case of the new spatial GLMMs,
and to the locations of raw monitoring data collected only at random
sampling stations in the case of the status-quo spatial GLMMs.

2.6. Development of spatial GAMs and production of suitability indices

For the life stage and season combinations analyzed for croaker,
brown shrimp and red snapper, spatial binomial GAMs were developed
with R package “mgcv” (Wood, 2017). These spatial binomial GAMs
included the fixed effects of depth and bottom salinity, an interaction
term between eastings and northings (i.e., longitude and latitude ex-
pressed in UTM coordinates), and the effects of year and monitoring
program. The interaction term between eastings and northings ac-
counted for spatial autocorrelation at a broad scale (Wood, 2017; Grüss
et al., 2018b, 2019b). Year and monitoring program were “nuisance”
variables treated as fixed effect factors (Farmer and Karnauskas, 2013;
Grüss et al., 2018b). Here, we used the depth estimates from the cou-
pled hydrodynamic-biogeochemical model FVCOM-WASP (averaged
for our 10 km×10 km FVCOM-WASP spatial grid) to match with the
bottom salinities obtained from FVCOM-WASP (averaged for our
10 km×10 km FVCOM-WASP spatial grid). Suitability indices could
only be predicted for the domain of the FVCOM-WASP spatial grid
where depth and bottom salinity are available.

For each life stage and season, prior to fitting spatial GAMs to
monitoring data, we conducted a collinearity analysis, which was ne-
cessary as regression methods like GAMs may be sensitive to correlated
predictors (Guisan et al., 2002; Dormann et al., 2013). This collinearity
analysis consisted of: (i) calculating Pearson’s correlation coefficients
between depth and bottom salinity, and between depth and bottom
salinity and eastings and northings; and (ii) removing depth and/or
bottom salinity if we found Pearson’s correlation coefficients greater
than 0.7 in absolute value (Leathwick et al., 2006; Dormann et al.,
2013).

For each life stage and season, a spatial binomial GAM of the fol-
lowing form was fitted to monitoring data (raw (not grid-summarized)
monitoring data collected only at random sampling sites in the case of
the status-quo models, and grid-summarized monitoring data collected
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at random and/or fixed sampling sites in the case of the new models):

= + + +
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where η is the probability of encounter; g is the logit link function
between η and each term on the right side of the equation; te X Y( , ) is a
tensor product smooth fitted to eastings and northings; s is a thin plate
regression spline with shrinkage fitted to depth or bottom salinity,
which is limited to four degrees of freedom to help preserve the eco-
logical interpretability of the suitability indices generated from GAM
predictions (Roberts et al., 2016; Mannocci et al., 2017; Grüss et al.,
2018b, 2019b). The REML optimization method was utilized (Wood,
2011).

We implemented a shrinkage approach to select environmental
predictors (depth and bottom salinity) for the spatial binomial GAMs
(Roberts et al., 2016; Mannocci et al., 2017b). Additionally, we applied
an extra penalty to each environmental predictor, as the smoothing
parameter approached zero, which allowed for the complete removal of
depth and/or bottom salinity from a spatial GAM when the smoothing
parameter was equal to zero (Marra and Wood, 2012). Moreover, after
GAM fitting, if the p-value of depth or bottom salinity exceeded 0.05,
depth or bottom salinity was removed from the spatial GAM and the
spatial GAM was refitted (Koubbi et al., 2006; Grüss et al., 2014;
Chagaris et al., 2015). Thus, it was possible to obtain final spatial GAMs
that included the effect of depth, the effect of bottom salinity, both of
these effects or none of these effects.

The fitted spatial binomial GAMs were evaluated using a 10-fold
cross validation procedure called “Leave Group Out Cross Validation”
(Hastie et al., 2001; Kuhn and Johnson, 2013). Briefly, for each life
stage and season, this 10-fold cross validation procedure consists of: (i)
randomly splitting the monitoring dataset into a training dataset (60 %
of the data) and a test dataset (40 % of the data); (ii) repeating Step 1
ten times and, therefore, producing 10 training datasets and 10 test
datasets; (iii) fitting a binomial GAM to each of the 10 training datasets;
(iv) evaluating the 10 fitted binomial GAMs using the test datasets, by
means of two performance metrics: the area under the receiver oper-
ating characteristic curve (AUC), which describes how well a binomial
GAM discriminates between non-encounters and encounters (i.e., is
indicative of discrimination accuracy); and the adjusted coefficient of
determination (adjusted R2), which quantifies how much of the var-
iance of the probability of encounter is explained by the GAM under
consideration (i.e., is indicative of predictive accuracy); and (v) con-
sidering a GAM acceptable if both the median AUC value over the 10
folds is greater than 0.7 (Hanley and McNeil, 1982; Pearce and Ferrier,
2000) and the median adjusted R2 over the 10 folds is above 0.1
(Legendre and Legendre, 1998).

After the spatial binomial GAM for each life stage and season was
fitted and validated, probabilities of encounter were predicted. For each
life stage and season, we constructed a 10 km×10 km prediction grid
from the 10 km×10 km FVCOM spatial grid (Fig. 2a), based on the
ranges of longitude, latitude and depth at which the life stage was
encountered by monitoring programs during the season under con-
sideration. Here, the depth data that we employed for generating pre-
diction grids were the depth estimates used in FVCOM-WASP (Fig. 2a).
For each environmental predictor i included in the spatial GAM for a
given life stage and season (depth or bottom salinity), predictions were
made over a vector of values ranging between the minimum and
maximum values of environmental predictor i over the prediction grid
for the life stage and season under consideration. This was done while:
(i) setting eastings and northings to their values at the barycenter of the
prediction grid; (ii) keeping the other environmental predictor in-
tegrated in the GAM constant at their mean value from the modeled
dataset; and (iii) setting the year and monitoring program factors to
their most frequent levels from the modeled dataset (Grüss et al.,
2018d, 2018b, 2019b). Let us denote the jth value of environmental

variable i by xi j, , where xi j, ranges between the minimum and maximum
values of environmental variable i over the prediction grid for the life
stage and season under consideration. The predictions we made with
spatial GAMs resulted in probabilities of encounter pi j, for each value of
xi j, .

Ultimately, it was possible to compute suitability indices (yi j, ),
which express the suitability of environmental conditions xi j, for a given
life stage in a given season, as follows:

=
−

−
y
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max p min p
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i j i j
,
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This computation ensures that suitability indices range between 0
and 1; the higher a given suitability index yi j, , the more suitable the
environmental conditions xi j, are for the life stage and season under
consideration (Grüss et al., 2018b, 2018d, 2019b).

We compared the results of the validation test and predicted suit-
ability indices for the new versus the status-quo spatial GAMs. Again,
the difference between the new and the status-quo spatial GAMs is that
the new spatial GAMs were fitted to grid-summarized monitoring data
collected at random and/or fixed sampling stations, while the status-
quo spatial GAMs were fitted to raw (not grid-summarized) monitoring
data collected only at random sampling stations.

To facilitate the interpretation of the suitability indices, we also
produced maps of probability of encounter from spatial GAM predic-
tions. For each life stage and season, maps of probability of encounter
were constructed using (i) the spatial GAMs fitted for those life stage
and season; (ii) the 10 km×10 km prediction grid generated for those
life stage and season from the 10 km×10 km FVCOM-WASP spatial
grid; and (iii) the most frequent year and monitoring program factor
levels in the modeled dataset for those life stage and season (Punt et al.,
2000; Ono et al., 2015; Grüss et al., 2018d, 2018b, 2019b).

3. Results

3.1. Monitoring data available for statistical habitat modeling

The monitoring data available for statistical habitat modeling varied
widely in terms of their coverage of life stages and seasons (Figs. 3–7
and A5 and Tables A6 and A7). In the cases of croaker and brown
shrimp, monitoring data collected at random sampling stations were
generally supplemented by a reasonable amount of monitoring data
collected at fixed sampling stations in Louisiana and Alabama coastal
waters (Figs. 3–5 and A5 and Tables A6 and A7). Exceptions to this
general pattern included croaker early juveniles in fall and winter,
croaker late juveniles in winter, croaker adults in winter, small brown
shrimps in fall and winter, and large brown shrimps in winter (Fig. A5);
therefore, statistical habitat models were not developed for these par-
ticular life stage and season combinations. By contrast, in the case of
red snapper, monitoring data collected at random sampling stations
were never supplemented by monitoring data collected at fixed sam-
pling stations, and the monitoring data collected at random sampling
stations were sufficient for developing statistical habitat models for all
our target life stages and seasons (Figs. 6 and 7 and A5 and Tables A6
and A7). Therefore, for each red snapper life stage and season, we fitted
the new and the status-quo statistical habitat models to the exact same
monitoring dataset. Thus, differences between the new and the status-
quo statistical habitat models for red snapper life stages can only be
attributed to the fact that monitoring data were grid-summarized in the
case of new statistical habitat models versus not grid-summarized in the
case of status-quo statistical habitat models.

3.2. Development of spatial GLMMs and production of distribution maps

For the present study, we fitted a total of 42 spatial GLMMs, in-
cluding 21 spatial GLMMs that were fitted to grid-summarized
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monitoring data collected at random and/or fixed sampling stations
(i.e., 21 “new” spatial GLMMs), and 21 spatial GLMMs that were fitted
to raw (not grid-summarized) monitoring data collected only at random
sampling stations (i.e., 21 “status-quo” spatial GLMMs). Specifically, we
fitted 2 * 2 spatial GLMMs for croaker early juveniles, 3 * 2 spatial

GLMMs for croaker late juveniles, 3 * 2 spatial GLMMs for croaker
adults, 2 * 2 spatial GLMMs for small brown shrimps, 3 * 2 spatial
GLMMs for large brown shrimps, 4 * 2 spatial GLMMs for red snapper
juveniles, and 4 * 2 spatial GLMMs for red snapper adults (Table A6).
For all croaker, brown shrimp and red snapper life stages and seasons,

Fig. 3. Encounter/non-encounter data (full circles: encounters; empty circles: non-encounters) and predictions of the new and status-quo spatial generalized linear
mixed models (GLMMs) for (a) early juveniles, (b) late juveniles and (c) adults of croaker (Micropogonias undulatus) in spring. The new spatial GLMMs use grid-
summarized monitoring data collected at random and fixed sampling stations, while the status-quo spatial GLMMs use raw (not grid-summarized) monitoring data
collected only at random sampling stations.

Fig. 4. Encounter/non-encounter data (full circles: encounters; empty circles: non-encounters) and predictions of the new and status-quo spatial generalized linear
mixed models (GLMMs) for (a) early juveniles, (b) late juveniles and (c) adults of croaker (Micropogonias undulatus) in summer. The new spatial GLMMs use grid-
summarized monitoring data collected at random and fixed sampling stations, while the status-quo spatial GLMMs use raw (not grid-summarized) monitoring data
collected only at random sampling stations.
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none of the estimated fixed parameters hit an upper or lower bound, the
final gradient for each fixed parameter was close to zero, and the
Hessian matrix was positive definite (Table A8). Therefore, for all study
life stages and seasons, we found no evidence of non-convergence.
Moreover, for all study life stages and seasons, Pearson residual plots
showed that observed encounter frequencies for either low or high
probability samples were within or extremely close to the 95 % con-
fidence interval for predicted probability of encounter (Fig. A9).
Pearson residual plots were usually similar for the new and the status-
quo spatial GLMMs. The only exception to this usual pattern was
croaker early juveniles in summer. In that case, the status-quo spatial
GLMM slightly underestimated probability of encounter for the highest
probability samples (Fig. A9).

Overall, the new and the status-quo spatial GLMMs predicted
roughly similar spatial distribution patterns for all croaker life stages
and seasons (Figs. 3 and 4 and A10 and Table A11). Both the new and
the status-quo spatial GLMMs predicted that: (i) croaker early juveniles
occupy relatively shallow coastal waters (mean depth ≤ 10m), croaker
late juveniles generally occupy deeper areas of the NWGOM (mean
depth of 18−24m), and croaker adults are usually encountered on the
continental shelf of the NWGOM rather than in coastal areas (mean

depth of 35−53m); and (ii) in summer, croaker early juveniles tend to
be found at shallower depths and croaker adults at deeper depths,
compared to the other seasons of the year.

However, the status-quo spatial GLMMs predicted very low prob-
abilities of encounter in some of the coastal areas where the new spatial
GLMMs predicted high probabilities of encounter, as the status-quo
models relied on monitoring data collected only at random sampling
stations, while new models relied on monitoring data collected at both
random and fixed sampling stations (Figs. 3 and 4 and A10). For ex-
ample, the probabilities of encounter of croaker early and late juveniles
in the coastal waters of eastern Louisiana, Mississippi and Alabama in
spring were predicted to be high by the new spatial GLMMs, but low by
the status-quo spatial GLMMs (Fig. 3). We can also note that, while the
new spatial GLMMs developed for croaker life stages did not use ad-
ditional fixed-station monitoring data for Texas coastal waters, these
new spatial GLMMs predicted higher probabilities of encounter for
croaker life stages in Texas nearshore areas than the status-quo spatial
GLMMs (Figs. 3 and 4 and A10). These predictions of the new spatial
GLMMs are due to the spatial autocorrelation terms (i.e., the random
effects ε) that the new spatial GLMMs estimated from a combination of
random-station and fixed-station monitoring data, which suggested a

Fig. 5. Encounter/non-encounter data (full circles: encounters; empty circles: non-encounters) and predictions of the new and status-quo spatial generalized linear
mixed models (GLMMs) for (a) small brown shrimp (Farfantepenaeus aztecus) and (b) large brown shrimps in summer. The new spatial GLMMs use grid-summarized
monitoring data collected at random and fixed sampling stations, while the status-quo spatial GLMMs use raw (not grid-summarized) monitoring data collected at
random sampling stations.

Fig. 6. Encounter/non-encounter data (full circles: encounters; empty circles: non-encounters) and predictions of the new and status-quo spatial generalized linear
mixed models (GLMMs) for (a) juveniles and (b) adults of red snapper (Lutjanus campechanus) in spring. The new spatial GLMMs use grid-summarized monitoring
data collected at random sampling stations, while the status-quo spatial GLMMs use raw (not grid-summarized) monitoring data collected at random sampling
stations.
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higher probability of encounter in Texas coastal areas based on the very
high probabilities of encounter estimated in nearby Louisiana coastal
areas from the encounter/non-encounter data collected at fixed sam-
pling stations by the LDWF. Another example is that croaker adults,
whose probability of encounter in the Vermilion Bay area (labelled as
“vb” on Fig. 2a) in all seasons was predicted to be high by the new
spatial GLMMs, but close to zero by the status-quo spatial GLMMs
(Figs. 3 and 4 and A10). Finally, for all croaker life stages and seasons,
the spatial distributions predicted by the new spatial GLMMs were
smoother, with somewhat wider areas of encounters, compared to the
spatial distributions predicted by the status-quo spatial GLMMs (Figs. 3
and 4 and A10).

The new and the status-quo spatial GLMMs tended to predict similar
spatial distribution patterns for the small and large brown shrimp for
the summer season (Fig. 5 and Table A11) and other seasons (Fig. A12
and Table A11). As with croaker, the spatial distributions predicted by
the new spatial GLMMs were broader, although similarly centered, as
the spatial distributions predicted by the status-quo spatial GLMMs.
Both the new and the status-quo spatial GLMMs predicted that small
brown shrimps are found in relatively shallow coastal waters (mean
depth of 12−17m), while large brown shrimps generally occupy
deeper areas on the NWGOM shelf (mean depth of 41−54m) (Table
A11). Both the new and the status-quo spatial GLMMs predicted that
the bulk of small shrimps in spring and the bulk of large shrimps in
spring and summer are encountered west of Vermilion Bay, particularly
in Texas waters, yet the probabilities of encounter in Louisiana, Mis-
sissippi and Alabama waters predicted by the new GLMM were higher
than those predicted by the status-quo spatial GLMM (Figs. 5 and A12).
Both the new and the status-quo spatial GLMMs predicted that, in
summer, small brown shrimps are primarily encountered in the coastal
waters of western Louisiana and Texas (Fig. 5). Predictions were not
available for small brown shrimps in the fall. The probability of en-
counter of large brown shrimps in fall was predicted to be high all over
the NWGOM shelf by the new spatial GLMM, but high only on the
western Louisiana and Texas shelves by the status-quo spatial GLMM
(Fig. A12).

The new and the status-quo spatial GLMMs predicted very similar
spatial distribution patterns for all red snapper life stages and seasons,
as the two types of spatial GLMMs relied on the exact same monitoring
datasets (Figs. 6 and 7 and A13 and Table A11). In all seasons, both the
new and the status-quo spatial GLMMs predicted that: (i) red snapper
juvenile hotpots are mainly located off Texas, Mississippi and Alabama;
(ii) the probability of encounter of red snapper adults tends to be higher
in Texas waters than in Louisiana, Mississippi and Alabama waters; and

(iii) red snapper adults are usually found in deeper waters than red
snapper juveniles (mean depth of 70−88m versus 43−58m). How-
ever, the new spatial GLMMs resulted in much smoother distribution
maps (although similar extent and location of the distributions) than
the status-quo spatial GLMMs for all red snapper life stages and seasons
(Figs. 6 and 7 and A13). In other words, using our new grid-summar-
ization method rather than the status-quo method does not affect spa-
tial GLMM predictions qualitatively, and simply results in smoother
predicted spatial patterns of probability of encounter.

3.3. Development of spatial GAMs and production of suitability indices

We fitted 42 spatial GAMs that matched the spatial GLMMs. Thus,
21 spatial GAMs were fitted to grid-summarized monitoring data col-
lected at random and/or fixed sampling stations (i.e., 21 “new” spatial
GAMs), and 21 spatial GAMs were fitted to raw monitoring data col-
lected only at random sampling stations (i.e., 21 “status-quo” spatial
GAMs) (see Table A7 for details). The selection of environmental cov-
ariates (depth and/or bottom salinity) based on the collinearity analysis
and the p-values of the environmental predictors sometimes resulted in
final new and status-quo spatial GAMs that included only depth, only
bottom salinity, both predictors, or none of the two predictors (Table
A7). For example, in the case of red snapper juveniles in winter, the
final new spatial GAM included the effects of depth and bottom salinity,
while the final status-quo spatial GAM included only the effect of
bottom salinity.

The spatial GAMs fitted in the present study usually had a median
AUC value greater than 0.7 and a median adjusted R2 greater than 0.1
(Figs. 8–10 and Table A14). Therefore, the spatial GAMs fitted in this
study usually passed the validation test. The only exceptions to this
usual pattern were (i) the status-quo spatial GAM for croaker late ju-
veniles in fall, for which we found a median adjusted R2 of 0.08; and (ii)
the status-quo spatial GAM for small brown shrimps in summer, for
which we found a median AUC of 0.682 and a median adjusted R2 of
0.08. Even though these two status-quo spatial GAMs did not pass the
validation test, we used their predictions to produce suitability indices
for comparison to the suitability indices from the new spatial GAMs.
However, our results for the status-quo spatial GAM for croaker late
juveniles in fall and small brown shrimp in summer should not be in-
terpreted ecologically. We also caution about the interpretation of the
suitability index for the status-quo spatial GAM for croaker adults in
spring, which had a lower bound of the 95 % confidence interval of the
AUC lower than 0.7 and a lower bound of the 95 % confidence interval
of the adjusted-R² lower than 0.1 (Fig. 8 and Table A14). In the case of

Fig. 7. Encounter/non-encounter data (full circles: encounters; empty circles: non-encounters) and predictions of the new and status-quo spatial generalized linear
mixed models (GLMMs) for (a) juveniles and (b) adults of red snapper (Lutjanus campechanus) in fall. The new spatial GLMMs use grid-summarized monitoring data
collected at random sampling stations, while the status-quo spatial GLMMs use raw (not grid-summarized) monitoring data collected at random sampling stations.
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croaker, the AUCs of the new and status-quo spatial GAMs were similar,
while the adjusted-R² of the new spatial GAMs was usually higher than
that of the status-quo spatial GAMs (Fig. 8 and Table A14). For small
brown shrimps, the AUC and adjusted-R² of the new spatial GAMs were
higher than those of the status-quo spatial GAMs (Fig. 9 and Table A14).
By contrast, for large brown shrimps, the AUC and adjusted-R² of the
status-quo spatial GAMs were higher than those of the new spatial
GAMs (Fig. 9 and Table A14). Finally, in the case of red snapper, the
AUC of the new spatial GAMs was lower than that of the status-quo
spatial GAMs, but the adjusted-R² of the new spatial GAMs was gen-
erally higher than that of the status-quo spatial GAMs (Fig. 10 and
Table A14).

The suitability indices expressing the probability of encountering
croaker life stages as a function of depth predicted by the new and, to a
lesser extent, by the status-quo spatial GAMs showed the expected
general usage of progressively deeper waters for early juveniles, late
juveniles, and adults (Figs. 11 and 12 and A15). Depth was not included
as an environmental predictor for many of the status-quo models; we,
therefore, focus on spring where both the new and status-quo spatial
GAMs generated results related to depth. Both the new and status-quo

spatial GAMs for spring showed that suitability decreased rapidly with
depth for early juveniles, and the new spatial GAM further showed the
progression towards deeper waters with late juveniles and adults
(Fig. 11). The increasing suitability with depth for adults was also
predicted by the status-quo spatial GAM (Fig. 11). The results were
more complete (more life stages and seasons covered) for the new
spatial GAMs compared to the status-quo spatial GAMs (Figs. 11 and
12), with neither type of spatial GAMs generating suitability results for
depth in fall (Fig. A15).

The suitability indices expressing the probability of encountering
croaker life stages as a function of bottom salinity predicted by the new
and the status-quo spatial GAMs were qualitatively similar but with
some differences (Figs. 11 and 12 and A15). Bottom salinity has a
complicated relationship with depth in the NWGOM region (Appendix
A3). In general, in the NWGOM region, bottom salinity rapidly in-
creases with depth reaching 35 ppt by about 75m depth, which results
in rapid changes (steep gradients) and relatively high variability in
bottom salinity for the nearshore (0–50m depth) coastal areas. There
are also localized pockets of low bottom salinity waters (e.g., at river
mouths) that protrude into the coastal zone and get advected along

Fig. 8. Results of the validation test for the spatial generalized additive models (GAMs) of croaker (Micropogonias undulatus) life stages (EJ: early juveniles; LJ: late
juveniles; A: adults). Results are provided for the new and the status-quo spatial GAMs. The new spatial GAMs use grid-summarized monitoring data collected at
random and fixed sampling stations, while the status-quo spatial GAMs use raw (not grid-summarized) monitoring data collected only at random sampling stations.
AUC=Area under the receiver operating characteristic curve.
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shore (Appendix A3).
First, both the new and status-quo spatial GAMs showed that the

dependence of early juveniles and late juveniles of croaker on shallow
coastal waters results in high suitability for low bottom salinity.
Suitabilities of croaker early juveniles in spring and summer generated
from the predictions of the new spatial GAMs showed decreasing suit-
ability with increasing depth and with increasing bottom salinity
(Figs. 11 and 12); when available (early juveniles and adults in spring;
late juveniles and adults in fall), these were similar to those for the
status-quo spatial GAMs. Suitability of late juveniles showed a similar,
although sometimes not simple, decrease of suitability with increasing
bottom salinity. For the new spatial GAMs, suitability of bottom salinity
steadily declined in spring (bottom right of Fig. 11) and declined with a
slight up-turn at high bottom salinities in fall (Fig. A15). The suitability
for bottom salinity for the status-quo spatial GAMs for fall also showed
an upturn at high salinities.

Second, the new spatial GAMs predicted more complicated suit-
ability relationships with bottom salinity for croaker adults compared
to the status-quo spatial GAMs, due to influence of including the
nearshore samples from fixed sampling. Both the new and status-quo
spatial GAMs resulted in suitabilities of adult for bottom salinity in all

three seasons (green lines in bottom of Figs. 11 and 12 and A15). For
both new and status-quo spatial GAMs, the suitability of depth for
adults in spring showed them to be more offshore than juveniles and
dispersed over a wide range (50–150m) of depths (top of Fig. 11).
However, because of a complicated relationship between depth and
bottom salinity, the suitabilities for bottom salinity showed more
complicated relationships than the expected increasing suitability with
increasing bottom salinity (if bottom salinity simply increased with
depth). The predicted probability of encountering croaker adults in
spring, summer and fall using the new spatial GAMs started at very high
suitability at low bottom salinity and decreased with increasing bottom
salinity, showing an upturn or secondary peak after about 30 ppt
(Figs. 11 and 12 and A15). This is in contrast to the status-quo spatial
GAMs that showed low suitability at low bottom salinity in spring
(Fig. 11), summer (Fig. 12), and fall (Fig. A15).

The differences in bottom salinity suitability between the new and
status-quo spatial GAMs for croaker adults reflected the influence of
nearshore monitoring data that was included with the fixed sampling
(Fig. A16). Croaker adults are found over many depths so that the
random and fixed sampling included adult use of nearshore habitat not
represented in the random-only sampling. The complicated relationship

Fig. 9. Results of the validation test for the spatial generalized additive models (GAMs) of brown shrimp (Farfantepenaeus aztecus) life stages (S: small individuals; L:
large individuals). Results are provided for the new and the status-quo spatial GAMs. The new spatial GAMs use grid-summarized monitoring data collected at
random and fixed sampling stations, while the status-quo spatial GAMs use raw (not grid-summarized) monitoring data collected at random sampling stations.
AUC=Area under the receiver operating characteristic curve.
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of suitability to bottom salinity for the new spatial GAMs suggests that
some croaker adults are more inshore than random sampling suggests
and are located in coastal waters that have low bottom salinities. The
nearshore habitat having croaker present, such the Vermilion Bay area
and other nearshore areas, have a range of bottom salinities at mod-
erate depths due to influence by circulation and the freshwater inputs of
estuaries and the Mississippi River plume (Fig. A16). However, the
highest suitability occurring for bottom salinity less than 5 ppt for the
new models is questionable and needs further evaluation (Figs. 11 and
12 and A15).

Third, while both the new and status-quo methods generated similar
shaped suitability relationships to bottom salinity in fall (Fig. A15), the
differences provided illustrate potentially important interpretation
differences on the suitability of mid-range bottom salinities. The new
spatial GAMs predicted that the probability of encountering croaker
late juveniles as a function of bottom salinity in fall decreases until
bottom salinity reaches around 32 ppt. The status-quo spatial GAMs
predicted that suitability remained very high until about 25 ppt and
then generally decreased (Fig. A15). These results create differences in
suitability of bottom salinity from 10 to 20 ppt (much higher suitability

Fig. 10. Results of the validation test for the spatial generalized additive models (GAMs) of red snapper (Lutjanus campechanus) life stages (J: juveniles; A: adults).
Results are provided for the new and the status-quo spatial GAMs. The new spatial GAMs use grid-summarized monitoring data collected at random sampling
stations, while the status-quo spatial GAMs use raw (not grid-summarized) monitoring data collected at random sampling stations. AUC=Area under the receiver
operating characteristic curve.

A. Grüss, et al. Fisheries Research 229 (2020) 105623

13



for the status-quo spatial GAMs with its sudden drop-off) that involves a
substantial portion of the habitat for croaker late juveniles. The inclu-
sion of more nearshore samples with the fixed sampling stations has,
perhaps, allowed for refinement of the almost step-wise suitability of
bottom salinity obtained with the status-quo spatial GAMs of late ju-
venile croaker (Fig. A16).

The suitability indices expressing the probability of encountering
brown shrimp life stages as a function of depth were often unavailable,
as depth was often excluded from the new and status-quo spatial GAMs
(Fig. 13 and A17). When available, the suitability indices expressing the
probability of encountering brown shrimp life stages as a function of
depth showed the expected general usage of deeper waters for large
brown shrimps compared to small brown shrimps (Fig. 13). Both the
new and the status-quo spatial GAMs predicted that, in spring, the
probability of encountering small brown shrimps decreased with depth
(Fig. 13). Regarding the summer season, depth was retained only in the
new spatial GAM of small brown shrimps, and a dome-shaped re-
lationship peaking at a depth of 30m was predicted (Fig. A17). No
suitability indices expressing the probability of encountering brown
shrimp life stages as a function of depth were available for the fall
season (Fig. A17).

The suitability indices expressing the probability of encountering
brown shrimp life stages as a function of bottom salinity differed be-
tween life stages and among seasons (Fig. 13 and A17). We focus here
on the spring and fall seasons, for which suitability indices related to
bottom salinity were provided by both the new and status-quo methods.
The suitability indices expressing the probability of encountering
brown shrimp life stages as a function of bottom salinity predicted by
the new and the status-quo spatial GAMs were similar. Both the new
and the status-quo spatial GAMs predicted that the probability of en-
countering large brown shrimps in spring increased with bottom sali-
nity (Fig. 13). Moreover, both the new and the status-quo spatial GAMs
predicted that the probability of encountering small brown shrimps in
spring and large brown shrimps in fall declined with bottom salinity
with an up-turn at high bottom salinities (25−30 ppt) (Fig. 13 and
A17). These more complex relationships stem from the fact that the
highest probabilities of encounter predicted by the new and status-quo
spatial GAMs are either for areas where bottom salinity is very low
(5–10 ppt; e.g., Vermilion Bay) or for areas where bottom salinity is
high (greater than 25−30 ppt; e.g., eastern Texas waters) (Fig. A18).
We can note that the preference of small brown shrimps for bottom
salinities less than 25 ppt in spring predicted by the new method is

Fig. 11. Suitability indices generated for croaker (Micropogonias undulatus) life stages and the spring season from the predictions of spatial generalized additive
models (GAMs). Results are provided for the new and the status-quo spatial GAMs. The new spatial GAMs use grid-summarized monitoring data collected at random
and fixed sampling stations, while the status-quo spatial GAMs use raw (not grid-summarized) monitoring data collected only at random sampling stations.
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much higher than that predicted by the status-quo method (Fig. 13).
This is due to the new method relying on the additional, fixed-station
encounter data covering nearshore areas of Louisiana and Alabama
where bottom salinity is relatively low (Table A7 and Fig. A18).

The suitability indices expressing the probability of encountering
red snapper life stages as a function of depth predicted by the new and
the status-quo spatial GAMs were generally very similar (Figs. 14 and
15 and A19). Both the new and the status-quo spatial GAMs predicted
that the probability of encountering red snapper juveniles and adults
decreases with depth in all seasons, and that the decrease is generally
slower for red snapper adults (blue line to the right of red line in
Figs. 14 and 15 and A19). One difference was the peak in suitability
sometimes predicted for intermediate depths: 30m for red snapper ju-
veniles and 70m for red snapper adults with the status-quo spatial GAM
in spring, and about 70m for adults with the new spatial GAM in winter
(Fig. 14 and A19).

The suitability indices for red snapper and bottom salinity predicted
by the new and the status-quo spatial GAMs were, like for depth, very
similar (Figs. 14–15 and A19). Both the new and the status-quo spatial
GAMs predicted that the probabilities of encountering red snapper ju-
veniles and adults increased with bottom salinity (tracking the

suitability for depth; blue line to the right of red line in Figs. 14 and 15
and A19) and reached a maximum at 35 ppt, and that the ranges of
bottom salinity over which red snapper juveniles and adults were en-
countered are constrained to 25–35 ppt in all seasons (Figs. 14 and 15
and A19 and A20).

4. Discussion

We developed and demonstrated a new grid-summarization method
that allows for the combined use of monitoring data collected at
random and fixed sampling stations. By making a comprehensive use of
the monitoring data available for a given marine region, our new
method allows for the generation of distribution maps and suitability
indices that are not attainable when relying on monitoring data col-
lected only at random sampling stations. For example, Grüss et al.
(2018c) fitted status-quo spatial GLMMs to a blending of monitoring
data collected only at random sampling stations to then construct dis-
tribution maps for the life stages of many fish and invertebrate species
of the U.S. Gulf of Mexico, with the ultimate goal to parameterize an
Atlantis ecosystem model. However, due to a lack of monitoring data
collected using random sampling designs in Louisiana, Mississippi and

Fig. 12. Suitability indices generated for croaker (Micropogonias undulatus) life stages and the summer season from the predictions of spatial generalized additive
models (GAMs). Results are provided for the new and the status-quo spatial GAMs. The new spatial GAMs use grid-summarized monitoring data collected at random
and fixed sampling stations, while the status-quo spatial GAMs use raw (not grid-summarized) monitoring data collected only at random sampling stations.
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Alabama coastal waters, Grüss et al. (2018c) were unable to develop
spatial GLMMs for several key fish and invertebrate life stages. Our new
grid-summarization method will allow for the development of spatial
GLMMs and the construction of annual distribution maps and, in some
cases, seasonal distribution maps for these key fish and invertebrate life
stages (see also the discussion on seasonal distribution maps below). In
addition, for species, life stages and seasons that have substantial data
available from fixed sampling stations, improved (more confidence,
better resolved location and extent used habitat) distribution maps and
suitability indices can be produced than with just random-station data.

The spatial distribution maps and suitability indices predicted for
croaker, brown shrimp and red snapper life stages using our new grid-
summarization method concurred with insights from the literature
(Table 2). In the cases of croaker and brown shrimp, we found some
differences between the predictions of our new method (that is capable
of employing monitoring data collected at both random and fixed
sampling stations) and the status-quo method (that can only employ
monitoring data collected at random sampling stations). By contrast, in
the case of red snapper, for which the data delivered by monitoring
programs collected only at random sampling sites have a satisfactory
spatial coverage and the new and status-quo statistical habitat models
only differed by the use of the summarization using a 10 km by 10 km
spatial grid in the case of the new models, the predictions of the new

and the status-quo models were generally very similar. The high simi-
larity of results between status-quo and new models for red snapper
demonstrates that the results are robust to the use of the new gridding
step described in Fig. 1.

For croaker and brown shrimp life stages, the major differences
between the new and the status-quo statistical habitat models were the
predicted seasonal spatial distributions. Specifically, because they use
monitoring data collected only at random sampling stations, the status-
quo spatial GLMMs largely underpredicted the probabilities of en-
counter of croaker and brown shrimp life stages in some nearshore
areas. This also affected the suitability indices, especially for croaker
adults, that use a broad area of the shelf; some differences between new
and status-quo spatial GAMs suggested different importance of shal-
lower waters (environmental predictor of depth) and low and mid-
range bottom salinities. These results can have implications for habitat
assessments, as spatial protection efforts targeting critical life stages
would miss some juvenile or spawner hotspots if they relied only on
status-quo statistical habitat models (Grüss et al., 2019a). Moreover, in
the case of croaker, the validation procedure suggested that new spatial
GAMs generally had higher predictive accuracy (higher adjusted-R²’s)
than status-quo spatial GAMs. Also, one status-quo spatial GAM
(croaker late juveniles in fall) did not pass the validation test, and we
observed one case (croaker adults in spring) where the lower bound of

Fig. 13. Suitability indices generated for brown shrimp (Farfantepenaeus aztecus) life stages and the spring season from the predictions of spatial generalized additive
models (GAMs). Results are provided for the new and the status-quo spatial GAMs. The new spatial GAMs use grid-summarized monitoring data collected at random
and fixed sampling stations, while the status-quo spatial GAMs use raw (not grid-summarized) monitoring data collected only at random sampling stations.
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the 95 % confidence interval of the adjusted-R² was lower than 0.1. In
the case of brown shrimp, the new spatial GAMs of small brown shrimps
had higher predictive accuracy (higher adjusted-R²’s) and higher dis-
crimination accuracy (lower AUCs) than status-quo GAMs, but the op-
posite was true for large brown shrimps. The reason for this result is
that monitoring data collected at random sampling stations do not have
a satisfactory spatial coverage in the case of small brown shrimps, but
are adequate for large brown shrimps (Fig. A5). In conclusion, for
species/life stages like croaker life stages and small brown shrimps for
which monitoring data collected at random sampling stations do not
have a satisfactory spatial coverage, the use of status-quo statistical
habitat models is discouraged; fisheries analysts should instead seek to
obtain monitoring data collected at both random and fixed sampling
stations and employ our new grid-summarization method.

The predictions of our new method and the status-quo method were
very similar for the red snapper life stages. Some minor differences
between the new and status-quo spatial GLMMs were that the spatial
distribution maps from the new models were smoother, and that the
new spatial GAMs of red snapper life stages had higher predictive ac-
curacy (higher adjusted-R²’s) than the status-quo spatial GAMs, but
lower discrimination accuracy (lower AUCs). The smoother distribution
maps obtained with the new spatial GLMMs for red snapper life stages
are due to the fact that the grid-summarization step described in Fig. 1

results in slightly different encounter/non-encounter datasets. More
precisely, the geographic coordinates of the encounter/non-encounter
datasets provided to the new and the status-quo spatial GLMMs are
different, so that the spatial variation terms (i.e., the random effects ε)
estimated by the new and the status-quo spatial GLMMs are different
and do not result in identical distribution maps. We conclude that, for
species/stages like red snapper for which monitoring data collected at
random sampling stations have a satisfactory spatial coverage: (i) spa-
tial GLMMs implemented using our new approach do not offer ad-
vantages over status-quo spatial GLMMs; and (ii) choosing new spatial
GAMs versus status-quo modeling spatial GAMs may, for specific spe-
cies, stage and season combinations, be a tradeoff between predictive
accuracy and discrimination accuracy.

One of the major results reported for brown shrimp in this study is
that brown shrimp probabilities of encounter are very high in Texas
waters in all seasons. This result was already reported in previous
studies (Matlock, 2010; Grüss et al., 2018e). The higher predicted
probabilities of encounter of brown shrimp in Texas waters compared
to the rest of the NWGOM likely do not reflect that Texas waters offer
better habitat for brown shrimp than Louisiana waters, but is primarily
the consequence of the more complex management measures that have
been implemented in Texas for decades, including fishing gear restric-
tions, size and bag limits, and temporal and spatial closures (Cody et al.,

Fig. 14. Suitability indices generated for red snapper (Lutjanus campechanus) life stages and the spring season from the predictions of spatial generalized additive
models (GAMs). Results are provided for the new and the status-quo spatial GAMs. The new spatial GAMs use grid-summarized monitoring data collected at random
sampling stations, while the status-quo spatial GAMs use raw (not grid-summarized) monitoring data collected at random sampling stations.
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1989; Caillouet et al., 2008; Matlock, 2010). Importantly, the high
predicted probabilities of encounter of small and brown shrimps in
spring west of Vermilion Bay, particularly in Texas waters, may be in
great part due to the spatial closures that have been enforced from the
shore to 9 nautical miles in Texas territorial waters from late May to
early July since 1960 (Cody et al., 1989; Matlock, 2010). Note that,
very recently, federal spatial closures that mimic the Texas closures
have also been implemented in the exclusive economic zone adjoining
to Texas state waters (https://gulfcouncil.org/press/2017/noaa-texas-
shrimp-closure-2017/).

Even with the use of monitoring data collected at both random and
fixed sampling stations, it is possible not to have enough information
for certain stage and season combinations for some species. In our
analysis, the dataset combining monitoring data collected at random
and fixed sampling stations did not have a satisfactory spatial coverage
for croaker early juveniles in fall, croaker late juveniles and adults in
winter, small brown shrimps in fall, and small and large brown shrimps
in winter. We suspect that there will be other instances where data
availability will not allow for the implementation of our new grid-
summarization method for some seasons of the year (e.g., some coastal
fish and invertebrate species/life stages, wide-ranging large pelagic
fishes like Bluefin tuna (Thunnus thynnus) and swordfish (Xiphias gla-
dius); Grüss et al., 2018c, 2018e). To remedy this issue, we envision two

options: (i) improving existing monitoring programs or, ideally,
creating new monitoring programs to allow for a satisfactory spatial
coverage of monitoring data for the species, life stages and seasons of
interest; and (ii) developing a new method enabling one to fit statistical
habitat models not only to monitoring data collected at both random
and fixed sampling stations, but also to opportunistic survey data.

The first option of improving the monitoring would be potentially
useful for croaker and other similar NWGOM fish and invertebrate
species that use nearshore habitats. Two monitoring programs con-
ducted in Louisiana coastal waters (the LDWF groundfish survey and
the LDWF shrimp trawl survey) have a good spatial coverage, but do
not collect the length information that would allow us to easily dis-
tinguish between life stages. The second option of employing oppor-
tunistic survey data will not work for croaker life stages, as none of the
opportunistic surveys that operate in the NWGOM collect length in-
formation (Grüss et al., 2018e). The data collected during opportunistic
surveys are typically presence-only data. However, presence-only data
are challenging to analyze, because the detection of species/life stages
during opportunistic surveys is usually dependent upon sampling
characteristics such as the distance to the coast or the distance to po-
pulated areas (Renner et al., 2015). Therefore, if a method capable of
handling monitoring data collected using random, fixed and opportu-
nistic sampling designs was developed, this method should take into

Fig. 15. Suitability indices generated for red snapper (Lutjanus campechanus) life stages and the fall season from the predictions of spatial generalized additive models
(GAMs). Results are provided for the new and the status-quo spatial GAMs. The new spatial GAMs use grid-summarized monitoring data collected at random
sampling stations, while the status-quo spatial GAMs use raw (not grid-summarized) monitoring data collected at random sampling stations.
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account sampling intensity and the covariates that influence sampling
intensity for the presence-only data collected during opportunistic
surveys (Fithian et al., 2015).

Recently, Grüss and Thorson (2019) designed a spatio-temporal
GLMM approach that relies on an approximation to a compound
Poisson-Gamma process to handle a combination of encounter/non-
encounter, count and biomass data. One major advantage of these re-
cent developments is that they not only allow for the production of
distribution maps for informing habitat assessments and EBFM efforts,
but also for the reconstruction of biomass trends and the description of
patterns of distribution shifts and range expansion/contraction, which
are valuable products for stock and habitat assessments (Grüss and
Thorson, 2019). Therefore, we recommend future studies to build upon
the present study and expand Grüss and Thorson (2019)’s spatio-tem-
poral GLMM approach so that it can handle encounter/non-encounter,
count and biomass data collected at random and/or fixed sampling
stations. This endeavor would be particularly useful to construct ac-
curate distribution maps and biomass time series with spatio-temporal
GLMMs for ecologically and socio-economically important coastal
species that are currently undersampled by the monitoring programs
using random sampling schemes, such as red drum and spotted seatrout
(Cynoscion nebulosus) (Grüss et al., 2018e).

In summary, we developed and demonstrated a new grid-summar-
ization method that allows for expanded use of monitoring data by
allowing for the combined statistical analysis of data collected at
random and fixed sampling stations. Our new grid-summarization
method allows for the generation of spatial distribution maps and
suitability indices for those species and life stages that are under-
sampled by the monitoring programs that employ random sampling
schemes. We also showed that our new grid-summarization method
generates similar results when the monitoring data collected at random
sampling stations alone are sufficient, so that there is no loss of in-
formation in using our new method when monitoring data collected at
random sampling stations are extensive. For these species and life
stages for which previous (status-quo) methods based only on mon-
itoring data collected at random sampling stations worked well, the
choice of our new method depends on whether there are benefits to
producing smoother distribution maps (new method), or whether the
fisheries analysts target higher predictive accuracy (new method) or
higher discrimination accuracy (status-quo method) when working
with spatial GAMs to generate suitability indices. Our new grid-sum-
marization method can be added to the statistical toolbox in the ever
important drive towards using the best available science in fisheries
management (MSRA (Magnuson-Stevens Fishery Conservation and
Management Reauthorization Act), 2006; Sullivan et al., 2006).
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